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Ahslraci The effectiveness of a deterministic algorithm recently proposed by 
Woiniakowski for the numerical estimation of high-dimensional integrals based on so- 
called optimal sampling points is studied by using it to compute vinal coefficients for the 
hard-sphere fluid. Although lhe algorithm is inherently more efficient than the familiar 
Monte Carlo method for sufficiently large samples, in practice this advantage diminishes 
rapidly wirh increasing dimensionality. For the virial coefficient problem, we find lhe 
new algorithm to be noticeably more efficienl than crude Monte Carlo for dimensions 
less ihan 10 and of comparable efficiency for larger dimensionality up to 14. 

1. Introduction 

Monte Carlo methods (Hammersley and Handscomb 1964) have proven to be 
powerful techniques for the estimation of multi-dimensional integrals. However, it 
is known that random sampling from a distribution (inherent in the Monte Carlo 
process) is not the optimal design for the numerical evaluation of multi-dimensional 
integrals, and alternative methods which are applicable in limited circumstances have 
been examined in the mathematical and scientific literature (Haselgrove 1961, Conroy 
1967, see Niederreiter 1978 for hundreds of references). One such potentially useful 
alternative based on so-called optimal sampling points has recently been proposed 
by Woiniakowski (1991). In this paper we examine the utility of this algorithm in a 
practical application of the sort encountered in the statistical mechanics of classical 
fluids. 

The problem of numerical integration is abstractly presented by the following: 
Find the best numerical approximation, I,, to 

I =  f ( z ) d z  J ,  
with the least computational effort, where the integrand f is to be integrated over the 
domain a, which is usually assumed to be compact, and (in this paper) is assumed 
to be a subset of 'Ed, (d-dimensional real space). In a crude Monte Carlo scheme, 
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I, is obtained by computing f at n random points in R. Let {T;};:: be n random 
points in R; then (if the q are distributed uniformly) 

E J Janse van Rensburg and G M Tom’e 

n-1 

4% = PI f(.i)l. (1.2) 
i=U 

where )RI = J n d z  A very important issue in (1.2) is the possibility of computing a 
confidence interval on the approximation. Usually, the root of the mean square error, 
U ,  is calculated. Standard probability theory provides a straightforward estimate for 
U (for example, Dowdy and Wearden 1983), 

An important observation (which follows immediately from (1.3)) is that 

u = O ( & )  

Hence, using random sampling one can approximate (1.1) at a cosf of O ( U - ~ ) .  
In the case of the optimal sampling points proposed by Woiniakowski (1991), 

by contrast, the cost of estimating an integral to within an average case error E 

is @(e-’(logE-’)(d-’)/Z ). As a consequence of the logarithmic term, then, for 
small enough z this cost will be less than that of a Monte Carlo estimation with 
a comparable error. The issue from a practical standpoint is whether this inherent 
advantage is realized for the sort of precision (typically, 0.01%) normally sought for 
statistical mechanical calculations. As a case-study, we re-examine the estimation of 
the virial coefficients of hard discs and hard spheres. In the following section we 
review the basis of the algorithm of Woiniakowski and consider the calculation of 
confidence intervals. In section 3 we describe the use of this algorithm to compute 
the virial coefficients and compare our results to the earlier ones obtained by Ree 
and Hoover (1964, 1967) by Monte Carlo methods. 

2. Numerical integration and Hammersley points 

2.1. Hammersley points 

The sampling points that form the basis of the method are related to classical 
Hammersley points (Niederreiter 1978, Roth 1980, Woiniakowski 1991). Let 
p l , p z , .  . . , p d - l  be the first d - 1 prime numbers. Any integer k > 0 can be 
expressed as CI2.”’ c i p j ,  where ci E [ O , p j  - 11 are integers. The radical inverse 
function is defined as @,,(k) = ~ ~ ! ~ k l  c ,P; ’ -~ .  In these expressions, 1x1 is the 
smallest integer larger than +, and the logic is taken to base p j .  Let 

u k  = ( $ p ~ ( ~ ) ?  $p2(ic)> ’ ’ ’ I @p.-, (Ic)) ’ (2.1) 
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Then the sequence {U,};:: is a sequence of ( d  - 1)-dimensional points which are 
related to shifted Hammers@ points by 

(2.2) 
{ 2 , ( t ) } ~ ~ ~ = { ( k + t ) / n , ~ L l k } L l k = U  n-1 suchthat O < k + t < n .  

If t = 0, then (2.2) defines the Hammersley poinrs. For example, suppose that d = 3 
and k = 6. Then 6 = xi=" q2', where c,, = 0 and e, = ~2 = 1, and 6 = di3', 
where do = d, = 0 and d, = 2 The radical inverses are &(6) = 2-2 + 2-3 = and 
4 , ( 6 ) = 2 ~ 3 - ~ = $ , a n d i f n > 6 , t h e n z , ( t ) = ( ( 6 + t ) / n , ~ , $ ) .  Le tn in (1 .1 )  
be the unit hypercube and suppose that f belongs to the class of real continuous 
functions equipped with the classical Wiener sheet measure; then an approximation 
to I is given by 12 = C;;tf(l- zb(t))/n. Woiniikowski proved~ the following 
theorem: 

Theorem (Woiniakowski 1991). The average case error of I F ,  E, is related to n by 

2 2 

= @(E-l(log,-l)(d-1)/2 ) .  

Observe that the final definition of {zk(t)}:," depends on n, and that the shift 
t in (22) is not specified. In this paper we examine the estimation of integrals using 
instead the potentially infinite sequence defined by 

In this case, the average case cost(If ,f)  (which is proportional to n, the number of 
sample points thrown) of approximating I to within an average case error which is 
at most E is given by (Woiniakowski 1991) 

cost(rf,E) = O ( ~ - ~ ( I O ~ ~ - ' ) ~ ) .  (2.4) 

That is, one loses some efficiency due to a larger power of the logarithmic factor as 
compared to Woiniakowski's theorem above. 

2.2. Estimating conjidence intervals . 
The assignment of confidence intenals is an essential part of the process of estimating 
multi-dimensional integrals. In the case of Monte Carlo integration there is a simple 
way to estimate confidence intervals based on (1.4). Assume that U = C/fi; the 
proportionality factor C is obtained as follow. The total sample size of n = Nm 
points is partitioned into N blocks of size m and the N block averages {Izc( i )}gl  
are treated as independent estimates normally distributed around the sample mean 
IFc = ELl IEc(i)/N. The 66% confidence interval in the sample mean, uMc, is 
then extrapolated from the variance of the distribution of block averages, Mu( Igc) ,  
by uMC = ,,%!arc IZC)/N. For crude Monte Carlo estimation the block averages are 
completely uncorrelated and cMC must be independent of m. 

In the case of Hammersley point integration based on the sample points defined 
by (2.3) the average case error is related to the sample size by (2.4). If we are to 
estimate the confidence interval in the spirit of a block analysis as set out above for 
a Monte Carlo integration, then we need the following hypothesis. 
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Hypothesis. Let uH be a confidence interval on an approximation 1; (obtained by 
sampling Hammersley points). Then there exists a constant C such that 

(2.5) 
-1  d n = C(log0, ) /U" 

where n is the number of points sampled in the estimation. 
Should we be able to calculate C in (25), then we can solve for uH as a function 

of n using a standard numerical technique. This approach is similar to the situation 
for Monte Carlo integration, as explained above, except that (2.5) replaces (1.4). A 
particularly simple way of measuring oH after m points are sampled is to perform 
a block analysis as set out in the case of Monte Carlo integration. The implicit 
assumption in this scheme is that each sequence of m Hammersley points, if m is 
large enough, provides an uncorrelated measurement of the integral, and that these 
measurements are normally distributed. The conlidence interval is then extrapolated 
to a sample size of n in exactly the same fashion as in the Monte Carlo integration, 
but using (2.5). 

3. Numerical Fesults 

The virial series for the pressure p of an imperfect gas is a power series in the number 
density p n/V,  

where n is the number of atoms in the volume V at temperature T, k is Boltzmann's 
constant and the virial coefficients Bi are sums of integrals over the coordinates of 
i particles. The calculation is organized using graphical expansion methods and we 
folIow here Ree and Hoover's modification of the original Ursell-Mayer formalism 
(Hill 1987, Kilpatrick 1971, Ree and Hoover 1964) 

lim - dr,dr, . . . dT;V; z! Y-m v ' J  1 - i  Bj = - 

where 

K = - X a ( G ; )  (I(k,l)f(~~,r~) + (1  - I ( ~ O ) ~ ( T ~ , T I ) ) .  (3.3) 
0, & > I  

k , I E G ,  

The summation in (3.3) is over irreducible graphs with i vertices, G;; I is an indicator 
which is 1 if the edge (k, I)  is in the edgeset of Gi and 0 otherwise, f is the Mayer 
f-function defined by ~ ( Q , T ~ )  = exp(-4(Tk,q)/kT) - 1 where Q is thc pair- 
potential, and f = f + 1. a(Gi )  is a symmetry factor which depcnds on the number 
of possible labellings of Gi and the details of the reformulation described by Ree 
and Hoover (1964). 

The numerical difficulties posed by the estimation of the integrals arising in 
(3.2) are typical of quadrature problems in classical statistical mechanics. The 
dimensionality is high, the integrand varies greatly in magnitude over the coordinate 
space with the overall result involving cancellation of opposing contributions, and 
the integrand is sufficiently complex that improvements over the uniformly random 
sampling of crude Monte Carlo may be hard to devise. 
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3.1. Computational details 
In its most elemental form a crude Monte Carlo estimate of Bi would consist of the 
generation of a succession of sets of i random vertices, uniformly distributed in a 
suitably large volume V, and the evaluation for each such vertex set of each of the 
graphs Gi contributing to (3.3). In this paper, however, we consider only hard discs 
and spheres, 

so that each f (and f) is a stepfunction f(lrk - r f l )  = O(l rk  - ql) - 1 where 

(3.4) 

As a result, only configurations in which each vertex lies within unit distance of at 
least one other need be considered since otherwise the integrand is zero for all Gi. 
Following Ree and Hoover (1964, 1967) we enforce this by sampling points from a 
product space of discs (two dimensions) or spheres (three dimensions). In (3.2) one 
integration (over T ~ )  is unnecessaly if we fix the origin at the centre of the particle 
labelled i. Then, the first point is sampled within unit distance of the origin, the 
second from within unit distance of the first, and so forth. For each configuration 
generated in this manner the remaining interparticle separations are examined to 
determine the connectivity of the corresponding graph. For example, the graph of 
figure 1 corresponds to the integral 

= Jne(irli)(i- ~ ~ I ~ ~ I ~ ~ ~ ~ I ~ ~ I ~ ~ ~ I ~ ~ - ~ ~ I ~ ~ ~ -  e(ir3-rli)) 

x e(lr3 - T21)drldrzdr3. (3.6) 

For T ~ , T ~ , T ~  E 'Rz the corresponding contribution to the fourth virial coefficient 
for hard disks will be proportional to 7r3 times the fraction of occurrences of this 
particular graph in the sample. In order to make a rapid identification of the graph 
for a particular configuration we have used the following hash table addressing scheme 
for the irreducible graphs. 

1 4 

Figure 1. The graph 101 101. 
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In a graph G with i vertices labelled 1 through i each possible edge can be 
labelled by the ordered pair (k,l), k < 1 of vertices at its endpoints. We order 
the i(i - 1)/2 possible edges as (1,2),(1,3), . . . ,(l,i),(2,3),(2,4), . . . ,(i - 1, i ) .  
There is now a natural representation of G in a string of i ( i -  1)/2 binary digits; the 
digit j takes the value 1 if the edge it represents is present in the graph, else it is zero. 
For example, the graph of figure 1 has the representation 101101 and, in an obvious 
notation, we may abbreviate the corresponding integrand in (3.6) as flullol(rl, r z ,  r3). 
(Of course, each unlabelled graph will have as many distinct representations in this 
scheme as it has distinct labellings. For instance, the graph in figure 1 has a second 
labelling with the representation IlOall.) This representation of graphs as strings 
of binary digits allows us to assign to each graph a unique numeral namely, the 
positive integer corresponding to its binary string. This numeral may then be used 
to compute an address for the graph in a hash table (Knuth 1973) of manageable 
size, with collisions resolved using linear probing. In this way we first construct a list 
of all the irreducible graphs with i vertices in a hash table. For each configuration 
generated in the sampling we may determine whether it is irreducible (i.e. contributes 
to B;) by computing its numeral and then querying the table in 0(1) CPU-time. 

3.2 Computing confidence intervals 

The calculation of confidence intervals and their dependence on sample size is 
essential for the comparison of the two integration methods. We present here 
numerical evidence in support of the block average approach hypothesized in 
section 2.2. Figure 2 shows the distribution of block averages for the integral (3.6) 
corresponding to the graph in figure 1, based on a total sample size of 1.5 x lo7 
configurations and a block-size of lo4. Assuming the distribution to be normal, we 
can compute the variance and the confidence interval of the mean can be calculated 
by extrapolating under the hypothesis (25). The extrapolation will be justified if it is 
independent of the block size. The results are shown in table 1 (upper section) for a 

, 
,/ .,.. 

Figure 2. Distributions of the block averages of the integral correrponding to the graph 
101101. The full curve is the distribution according to Hammersley points; the bmken 
curve corresponds to Monte Carlo sampling. The variance in these distributions are 
a%umed to indicate the confidence interval in a single block average. The block size 
was taken to be 10000 in this case. 
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Table 1. The dependence of the con6dence inleml on the block size. The inlegral 
corresponds to lhe graph 101101 (upper section) and 101101100101111 (lower section). 
The sample Size was 2.5 x IO6 (upper section) and 5 x lo6 (lower section). 

Block size Hammersley Monte Carlo 

1000 O.wO76 0.0015 
2 WO O.wO75 0.0015 
5000 O.wO81 0.0015 

10000 O.wO79 0.0015 
25000 0.OM82 0.001 5 
SO000 O.wO81 0.001 5 

1000 o.om 14 0.00057 
2 000 O.OM 14 0.00057 
5 OW O.OM 14 0.00057 

10000 O.OM 14 0.00057 
25000 0.W 14 0.00057 
50000 O.oM116 0.00057 

Table 2. Vinal coefficients in two (upper section) and three (lower section) dimensions. 

Coefficienl UH UMC Dimensions Sample size 

B4/(Bi) 0,53215 0.00304 0.00030 6 2 x 10' 
& / ( E $ )  0,19882 O.OM07 0.00015 10 108 
B,/(Bi)  0.11490 0.00309 0.00020 12 10s 

Bs/(Bi) 0.03919 O.OM07 0.00015 15 108 
B,/(Bi)  0.01311 0.00308 0.00020 18 108 

wide range of block sizes along with the confidence limit for a Monte Carlo sample 
of the identical size. (For the present case of hard particles the crude Monte Carlo 
sampling is just a Bernoulli process. As Kratky (1977) observed in his reassessment of 
the work of Ree and Hoover, the confidence limit can then be computed directly from 
the mean itself without explicitly calculating block averages. That is the procedure 
we have used here.) The lower section of table 1 shows the results of a similar test 
applied to the higher-dimensional integral 

In both cues the data clearly support our use of an extrapolation based on block 
averages to estimate confidence intervals for the Hammersley point integrations. 

3.3. The sixth and sevenlh vinal coeficients 

The definitive calculation of virial coefficients for fluids of hard discs and hard 
spheres remains that of Ree and Hoover (1964, 1967) whose work provides a useful 
benchmark against which to test Hammersley point integration. As an initial test we 
computed B, for hard discs, a six-dimensional integral. The results for a sample of 
2 x lo7 paints are listed in table 2 (upper section). uH is the confidence interval 
on the Hammersley sampling and uMc is the theoretical Monte Carlo confidence 
interval referred to above, computed for a hypothetical Monte Carlo sample of equal 
size. For this relatively low-dimensional integral there is quite a significant gain in 
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efficiency in the Hammersley sampling scheme over the Monte Carlo sampling. The 
value obtained for B4 is consistent with the earlier, less precise estimate of Ree and 
Hoover (1964), B,/(Bz) = 0.5327 i 0.0005. B6 and 8, were similarly obtained 
(over 1 x 108 Hammersley points); these results are also listed in table 2 (upper 
Section). They are again consistent with the previous estimates of Ree and Hoover 
who reported B,/(B:) = 0.1992 f 0.0008 and B,/(B$)  = 0.1141 f 0.0005. A 
comparison of the thud and fourth columns of table 2 (upper section) shows the 
Hammersley point integration to be superior to Monte Carlo in every case but that 
the gain in efficiency diminishes as the dimensionality increases. 

The sixth and seventh viriial coefficients were also calculated in three dimensions. 
These results are listed in table 2 (lower section). Again, they are consistent with 
those obtained by Ree and Hoover (1964, 1967), B6/(  8;) = 0.0386 f 0.0004 and 
B7/( B,6) = 0.0138 i O.ooo6. (As pointed out by Kratky (1977) the confidence limit 
for B, originally reported by Ree and Hoover is too low. We have followed his 
practice here in assigning the appropriate value for a Monte Carlo sample of the 
size reported by Ree and Hoover.) For the sample size we have used, 10' points, 
Hammersley point integration appears to retain its superiority over Monte Carlo 
integration in all cases. 

3.4. Discussion 

For other sample sizes the relative efficiencies of the two integration methods will 
behave differently because of the different functional dependencies on sample size in 
(1.4) and (2.5). The comparison will also be strongly dependent on the dimensionality 
of the integral through its appearance in (2.5). Consider first the low dimensionality 
case, B4 for hard discs, d = 6. In figure 3 we have plotted the extrapolated the 
confidence intervals for B4 for both Monte Carlo and Hammersley sampling, using 
(1.4) and (2.5). The logarithm of U is plotted using a vertical scale on which each 
unit corresponds to a difference of one significant figure in the confidence interval 
and the sample size is indicated, also logarithmically, on the horizontal scale. The 
two filled squares on the curves represent the confidence limits for our actual sample 

E J Janse van Rensburg and G M Tom'e 

Figure 3. The confidence interval extrapolated as a function of the sample size n for 
Bd/(B;) for hard discs. Ihe full cuwe corresponds to Hammenley sampling, and the 
broken CUNC lo Monte Carlo sampling. 
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of 2 x IO' points and the vertical distance between them corresponds to the difference 
in precision of just under one significant digit shown in table 2 (upper section). This 
advantage of the Hammersley point integration would be expected to increase with 
larger sample sizes as indicated by the increasing separation between the two curves 
in the figure. For lOI4  points there would be a gain of about 2 signscant figures, at 
lozo points about 4 significant figures. 

The curvature (on the log scale) of the Hammersely sampling error function 
(2.5) in figure 3 suggests, however, that more complex behaviour can occur, and this 
indeed turns out to be the case for the higher dimensional integrals, B, and 5, for 
hard spheres. Figure 4 is the log-log plot of the extrapolated confidence inteml 
versus the sample size for B,. Again, the filled squares indicate the confidence 
limits for the sample size we actually used, I@ points, and show the superiority of 
Hammersley sampling. However, the curves indicate that this advantage would be 
lost if the sample size were increused to IO'" points and would be regained only 
with a sample size of about 10" points. In the interval between, our data show a 
slight advantage for the Monte Carlo method, but the difference is not big enough 
to be definitive. The message, however, is clear. There would be no advantage in 
using Hammersley points rather than Monte Carlo to improve the estimate of B6 
beyond that in table 2 (lower section). An examination of our data shows that a 
large contribution to the confidence interval comes from the complete graph IC, (in 
our notation, this is the graph 111111111111111) (figure 5). We find for this graph 
the value -0.05895i :$:: where the Hammersley point confidence limit is shown 
above and the Monte Carlo confidence limit below. Already one observes that there 
is little difference between the confidence intervals for the two methods. The cycle 
graph C, (in our notation 100011000100101, figure 5) also contributes a large part 
to the virial coefficient, and our data indicate that this ra h is computed just as 
effectively by Monte Carlo. We find a value of 0.01095 i u~uuuu4. 

A similar trend is observed if we consider the seventh vuial coefficient of hard 
spheres instead. Again, the graphs I<, and C, contributed most to the confidence 
interval. We find for K,  a value of -0.023 16 j, if:: and for C, a value of 
-0.00813i ::E::. That is, C, is computed more effectively by Monte Carlo. 

4J.lI8u4 

Ffgure 4. The confidence interval exlrapolated as a function of the sample sue n for 
&/( Bz) for hard spheres. 
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Figure 5. The complele graph K6 and the cycle graph C6. Both these graphs contribute 
significantly Io Ihe confidence i n t e n d  in B6. 

4. Conclusions 

In this paper we set out to study the effectiveness of a technique based on 'optimal 
sampling' using Hammersley points in place of the familiar Monte Carlo method to 
evaluate high-dimensional integrals. Using the evaluation of virial coefficients for 
the hard disc and hard sphere fluids as test cases, we found Hammersley sampling 
proved notably more effective than simple Monte Carlo integration provided that 
the dimensionality was not too high (d < 10) and that this advantage increased 
with sample size (cf figure 3). The method is, however, handicapped by thc 
logarithmic correction term in (2.5) which degrades its performance with increasing 
dimensionality. This handicap could be mitigated somewhat by using instead the 
shifted Hammersley points of (2.2). In that case, one hypothesizes that the confidence 
interval would be related to the sample size n by n = C(logofi')(d-l)/2/ow If so, 
this would double the range of dimensions where the sampling would prove effective. 
Hence, Monte Carlo remains a very competitive method for the range of dimensions 
and numbers of sampling points used in the calculation of B6 and B, for hard spheres, 
values which are representative of problems in statistical physics. In addition, the 
simple crude Monte Carlo method used here as the benchmark can often be greatly 
improved for particular problems through the use of appropriate variance reduction 
techniques (Hammersley and Handscomb 1964), such as the method of important 
sampling, which has found wide applications in the integration of integrals of very 
high dimensionality. This additional flexibility inherent to the Monte Carlo method 
can be very effective in reducing the cost of an integration, and makes the Monte 
Carlo method probably the superior technique in most applications. 

Overall, however, the promise held out by the stronger decay with sample size of 
the error estimate in (2.5) has not been fulfilled in a very satisfying way in practice. To 
realize the advantage implicit in this functional dependence when the dimensionality 
is high one must use sample sizes which are astronomical. For the 15-dimensional 
integral in figure 4, no advantage is noted until the sample sizes are of O( if 
we sample lo7 points per hour (which is reasonable on a fast workstation), we shall 
need O( 10") seconds to observe an advantage in using Hammersley sampling. This 
is about the age of universe (and in that case, we will know B 6 / (  B:) to about 10 
significant digits). 
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